
Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 1

Crypto Lab – Public-Key Cryptography and PKI

Copyright © 2006 - 2016 Wenliang Du, Syracuse University.
The development of this document was partially funded by the National Science Foundation under Award
No. 1303306 and 1318814. This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. A human-readable summary of (and not a substitute for) the license is
the following: You are free to copy and redistribute the material in any medium or format. You must give
appropriate credit. If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original. You may not use the material for commercial purposes.

1 Overview

The learning objective of this lab is for students to get familiar with the concepts in the Public-Key encryp-
tion and Public-Key Infrastructure (PKI). After finishing the lab, students should be able to gain a first-hand
experience on public-key encryption, digital signature, public-key certificate, certificate authority, authen-
tication based on PKI. Moreover, students will be able to use tools and write programs to create secure
channels using PKI.

2 Lab Environment

Installing OpenSSL. In this lab, we will use openssl commands and libraries. We have already in-
stalled openssl binaries in our VM. It should be noted that if you want to use openssl libraries in
your programs, you need to install several other things for the programming environment, including the
header files, libraries, manuals, etc. We have already downloaded the necessary files under the directory
/home/seed/openssl-1.0.1. To configure and install openssl libraries, go to the openssl-1.0.1
folder and run the following commands.

You should read the INSTALL file first:

$ sudo ./config
$ sudo make
$ sudo make test
$ sudo make install

3 Lab Tasks

3.1 Task 1: Become a Certificate Authority (CA)

A Certificate Authority (CA) is a trusted entity that issues digital certificates. The digital certificate certi-
fies the ownership of a public key by the named subject of the certificate. A number of commercial CAs
are treated as root CAs; VeriSign is the largest CA at the time of writing. Users who want to get digital
certificates issued by the commercial CAs need to pay those CAs.

In this lab, we need to create digital certificates, but we are not going to pay any commercial CA. We
will become a root CA ourselves, and then use this CA to issue certificate for others (e.g. servers). In this
task, we will make ourselves a root CA, and generate a certificate for this CA. Unlike other certificates,
which are usually signed by another CA, the root CA’s certificates are self-signed. Root CA’s certificates are



Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 2

usually pre-loaded into most operating systems, web browsers, and other software that rely on PKI. Root
CA’s certificates are unconditionally trusted.

The Configuration File openssl.conf. In order to use OpenSSL to create certificates, you have to
have a configuration file. The configuration file usually has an extension .cnf. It is used by three OpenSSL
commands: ca, req and x509. The manual page of openssl.conf can be found using Google search.
You can also get a copy of the configuration file from /usr/lib/ssl/openssl.cnf. After copying
this file into your current directory, you need to create several sub-directories as specified in the configuration
file (look at the [CA default] section):

dir = ./demoCA # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
new_certs_dir = $dir/newcerts # default place for new certs.

database = $dir/index.txt # database index file.
serial = $dir/serial # The current serial number

For the index.txt file, simply create an empty file. For the serial file, put a single number in
string format (e.g. 1000) in the file. Once you have set up the configuration file openssl.cnf, you can
create and issue certificates.

Certificate Authority (CA). As we described before, we need to generate a self-signed certificate for our
CA. This means that this CA is totally trusted, and its certificate will serve as the root certificate. You can
run the following command to generate the self-signed certificate for the CA:

$ openssl req -new -x509 -keyout ca.key -out ca.crt -config openssl.cnf

You will be prompted for information and a password. Do not lose this password, because you will
have to type the passphrase each time you want to use this CA to sign certificates for others. You will also
be asked to fill in some information, such as the Country Name, Common Name, etc. The output of the
command are stored in two files: ca.key and ca.crt. The file ca.key contains the CA’s private key,
while ca.crt contains the public-key certificate.

3.2 Task 2: Create a Certificate for PKILabServer.com

Now, we become a root CA, we are ready to sign digital certificates for our customers. Our first customer is
a company called PKILabServer.com. For this company to get a digital certificate from a CA, it needs
to go through three steps.

Step 1: Generate public/private key pair. The company needs to first create its own public/private key
pair. We can run the following command to generate an RSA key pair (both private and public keys).
You will also be required to provide a password to encrypt the private key (using the AES-128 encryption
algorithm, as is specified in the command option). The keys will be stored in the file server.key:

$ openssl genrsa -aes128 -out server.key 1024

The server.key is an encoded text file (also encrypted), so you will not be able to see the actual
content, such as the modulus, private exponents, etc. To see those, you can run the following command:

$ openssl rsa -in server.key -text



Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 3

Step 2: Generate a Certificate Signing Request (CSR). Once the company has the key file, it should
generates a Certificate Signing Request (CSR), which basically includes the company’s public key. The
CSR will be sent to the CA, who will generate a certificate for the key (usually after ensuring that identity
information in the CSR matches with the server’s true identity). Please use PKILabServer.com as the
common name of the certificate request.

$ openssl req -new -key server.key -out server.csr -config openssl.cnf

It should be noted that the above command is quite similar to the one we used in creating the self-signed
certificate for the CA. The only difference is the -x509 option. Without it, the command genreates a
request; with it, the command generates a self-signed certificate.

Step 3: Generating Certificates. The CSR file needs to have the CA’s signature to form a certificate.
In the real world, the CSR files are usually sent to a trusted CA for their signature. In this lab, we will
use our own trusted CA to generate certificates. The following command turns the certificate signing re-
quest (server.csr) into an X509 certificate (server.crt), using the CA’s ca.crt and ca.key:

$ openssl ca -in server.csr -out server.crt -cert ca.crt -keyfile ca.key \
-config openssl.cnf

If OpenSSL refuses to generate certificates, it is very likely that the names in your requests do not match
with those of CA. The matching rules are specified in the configuration file (look at the [policy match]
section). You can change the names of your requests to comply with the policy, or you can change the policy.
The configuration file also includes another policy (called policy anything), which is less restrictive.
You can choose that policy by changing the following line:

"policy = policy_match" change to "policy = policy_anything".

3.3 Task 3: Use PKI for Web Sites

In this lab, we will explore how public-key certificates are used by web sites to secure web browsing. First,
we need to get our domain name. Let us use PKILabServer.com as our domain name. To get our
computers recognize this domain name, let us add the following entry to /etc/hosts; this entry basically
maps the domain name PKILabServer.com to our localhost (i.e., 127.0.0.1):

127.0.0.1 PKILabServer.com

Next, let us launch a simple web server with the certificate generated in the previous task. OpenSSL
allows us to start a simple web server using the s server command:

# Combine the secret key and certificate into one file
$ cp server.key server.pem
$ cat server.crt >> server.pem

# Launch the web server using server.pem
$ openssl s_server -cert server.pem -www

By default, the server will listen on port 4433. You can alter that using the -accept option. Now, you
can access the server using the following URL: https://PKILabServer.com:4433/. Most likely,
you will get an error message from the browser. In Firefox, you will see a message like the following:



Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 4

“pkilabserver.com:4433 uses an invalid security certificate. The certificate is not trusted because the issuer
certificate is unknown”.

Had this certificate been assigned by VeriSign, we will not have such an error message, because VeriSign’s
certificate is very likely preloaded into Firefox’s certificate repository already. Unfortunately, the certificate
of PKILabServer.com is signed by our own CA (i.e., using ca.crt), and this CA is not recognized by
Firefox. There are two ways to get Firefox to accept our CA’s self-signed certificate.

• We can request Mozilla to include our CA’s certificate in its Firefox software, so everybody using
Firefox can recognize our CA. This is how the real CAs, such as VeriSign, get their certificates into
Firefox. Unfortunately, our own CA does not have a large enough market for Mozilla to include our
certificate, so we will not pursue this direction.

• Load ca.crt into Firefox: We can manually add our CA’s certificate to the Firefox browser by
clicking the following menu sequence:

Edit -> Preference -> Advanced -> View Certificates.

You will see a list of certificates that are already accepted by Firefox. From here, we can “import” our
own certificate. Please import ca.crt, and select the following option: “Trust this CA to identify
web sites”. You will see that our CA’s certificate is now in Firefox’s list of the accepted certificates.

Now, point the browser to https://PKILabServer.com:4433. Please describe and explain your
observations. Please also do the following tasks:

1. Modify a single byte of server.pem, and restart the server, and reload the URL. What do you
observe? Make sure you restore the original server.pem afterward. Note: the server may not be
able to restart if certain places of server.pem is corrupted; in that case, choose another place to
modify.

2. Since PKILabServer.com points to the localhost, if we use https://localhost:4433 in-
stead, we will be connecting to the same web server. Please do so, describe and explain your obser-
vations.

3.4 Task 4: Establishing a TLS/SSL connection with server

In this task, we will implement a TCP client and TCP server, which are connected via a secure TCP con-
nection. Namely, the traffic between the client and the server are encrypted using a session key that are
known only to the client and the server. Moreover, the client needs to ensure that it is talking to the intended
server (we use PKILabServer.com as the intended server), not a spoofed one; namely, the client needs
to authenticate the server. This server authentication should be done using public-key certificates1.

OpenSSL has implemented the SSL protocol that can be used to achieve the above goals. You can use
OpenSSL’s SSL functions directly to make an SSL connection between the client and the server, in which
case, the verification of certificates will be automatically carried out by the SSL functions. There are many
online tutorials on these SSL functions, so we will not give another one here. Several tutorials are linked in
the web page of this lab.

We provide two example programs, cli.cpp and serv.cpp, in a file demo openssl api.zip,
to help you to understand how to use OpenSSL API to build secure TCP connections. The file can be

1In practice, the server also needs to authenticate the client. However, for the sake of simplicity, we do not require client
authentication in this task.



Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 5

downloaded from the lab’s web page. The programs demonstrate how to make SSL connections, how to
get peer’s certificate, how to verify certificates, how to get information out of certificates, etc. To make the
program work, you have to unzip it first and run the make command. The zip file includes a certificate
for server and another for the client. The passwords (private keys are encrypted using the passwords) are
included in the README file.

Tasks. Using the provided example as your basis, you should do the following tasks and describe your
activities, observations, and answers in your lab report:

• Please use the server certificate that you generated in Task 2 as the certificate for the server.

• The client program needs to verify the server certificate. The verification consists of several checks.
Please show where each check is conducted in your code (i.e., which line of your code does the
corresponding check):

1. The effective date

2. Whether the server certificate is signed by an authorized CA

3. Whether the certificate belongs to the server

4. Whether the server is indeed the machine that the client wants to talk to (as opposed to a spoofed
machine).

To answer this question using your first-hand experience, you can modify the server’s certificate and
private key, the CA’s certificate, etc.; you can then run your program, and see which line of your code
reports errors.

• The provided sample code for the server also verifies the client’s certificate. We do not need this,
please remove this part of code, and show us what changes you made in the server-side code.

• What part of the code is responsible for the key exchange, i.e. for both sides to agree upon a secret
key?

Note: To find out where the effective date is checked, you can either create a certificate that has an invalid
effective date, or you can change your system time. You can use the following command to do so:

$ sudo date --set="1 May 2000"

It should be noted that within a few seconds, the date will be set back to the correct date due to the
time synchronization service running on the system. You can either disable that service using the following
command, or simply conduct the experiment within the very short time window. If you stop the service,
make sure you restart it after your experiment, or the timestamps in your screenshots will not be the current
time, and your lab reports may end up being rejected by your instructor.

Disable the time synchronization service
$ sudo service vboxadd-service stop

Restart the time synchronization service
$ sudo service vboxadd-service start



Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 6

3.5 Task 5: Performance Comparison: RSA versus AES

In this task, we will study the performance of public-key algorithms. Use encrypt.sh. Please prepare a
file (message.txt) that contains a 16-byte message. Please also generate an 1024-bit RSA public/private
key pair. Then, do the following:

1. Encrypt message.txt using the public key; save the the output in message enc.txt.

2. Decrypt message enc.txt using the private key.

3. Encrypt message.txt using a 128-bit AES key.

4. Compare the time spent on each of the above operations, and describe your observations. If an opera-
tion is too fast, you may want to repeat it for many times, and then take an average.

After you finish the above exercise, you can now use OpenSSL’s speed command to do such a bench-
marking. Please describe whether your observations are similar to those from the outputs of the speed
command. The following command shows examples of using speed to benchmark rsa and aes:

$ openssl speed rsa
$ openssl speed aes

3.6 Task 6: Create Digital Signature

In this task, we will use OpenSSL to generate digital signatures. Please prepare a file (example.txt) of
any size. Please also prepare an RSA public/private key pair. Do the following:

1. Sign the SHA256 hash of example.txt; save the output in example.sha256.

2. Verify the digital signature in example.sha256.

3. Slightly modify example.txt, and verify the digital signature again.

Please describe how you did the above operations (e.g., what commands do you use, etc.). Explain your
observations. Please also explain why digital signatures are useful.

4 Submission

You need to submit a detailed lab report to describe what you have done and what you have observed; you
also need to provide explanation to the observations that are interesting or surprising. In your report, you
need to answer all the questions listed in this lab.


